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The reference spectrum method of Bethe, Brandow, and Petschek for the calculation of the ground-state 
properties of nuclear matter is applied to the boundary-condition model of Feshbach and Lomon for the 
two-nucleon interaction. The short-range contribution to the reference G matrix is evaluated analytically, 
and the formulas needed for evaluation of the outer contribution given. The method is applied to a simple 
model interaction (boundary condition plus square well acting in S states only) and results compared with 
those from typical hard-core potentials. The correction terms to the reference approximation are found to 
be about one MeV per particle. The important region of intermediate state momenta in which the reference 
spectrum should be fitted, is again found to be near 4 F"1. 

I. INTRODUCTION 

IN a recent paper, Bethe, Brandow, and Petschek1 

have presented a reference spectrum method for 
calculating the properties of nuclear matter. The 
method has two aims: firstly, it provides a convenient 
and transparent method for carrying out the calcula­
tions of the Brueckner2 theory, and secondly, it provides 
more insight into the role of the two-body interaction 
in determining the properties of the many-body system. 
In this respect it follows the line of development of 
Moszkowski and Scott,3 and of Gomes, Walecka, and 
Weisskopf.4 In all of these papers, the two-body inter­
action has been considered to contain a repulsive core. 

An alternative representation of the two-body inter­
action is provided by the boundary-condition model 
(denoted BCM) of Feshbach, Lomon, and collabo­
rators.5 Here the long-range parts of the force are de­
rived from a potential, which can largely be taken from 
theory as the one-pion exchange potential and some 
version of two-pion exchange. The short-range forces, 

1 H. A. Bethe, B. H. Brandow, A. G. Petschek, Phys. Rev. 129, 
225 (1963). This paper is denoted BBP in the text. 

2 Among the numerous papers by Brueckner and collaborators, 
K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958) 
may be consulted for other references. 

3 S. A. Moszkowski and B. L. Scott, Ann. Phys. (N.Y.) 11, 65 
(1960). 

4 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. 
(N.Y.) 3, 241 (1958). 

6 H . Feshbach and E. Lomon, Phys. Rev. 102, 891 (1956). 
H. Feshbach, E. Lomon, and A. Tubis, Phys. Rev. Letters 6, 635 
(1961). 

about which experimental evidence is most equivocal, 
are represented by an energy-independent boundary 
condition on the wave function at a fixed radius about 
one-half pion Compton wavelength. The view is that the 
interaction energy at short radii is very large compared 
to the bombarding energy used in the study of the 
forces. This model provides a good fit to phenomenologi-
cal phase shifts, which at least shows that our knowledge 
of the form of the two-body force at short radii can be 
reduced to a small number of boundary-condition 
parameters. I t is therefore of interest to see the pre­
dictions of the BCM for nuclear matter, and to compare 
these with the predictions of hard-core potentials. Some 
progress in this direction has been made by Lomon and 
MacMillan.6 Their method is the direct one of solving 
the G-matrix equations in momentum space. 

In this paper we apply the reference-spectrum 
method of BBP to the boundary-condition model. This 
provides us with a simple method of calculating the 
properties of nuclear matter, and further it allows us to 
calculate in coordinate space where the BCM is in­
tuitively more meaningful. This development is con­
tained in Sec. II , I I I , and IV. We adhere closely to the 
notation of BBP in order to facilitate comparison with 
their work, and for sake of brevity to avoid rederiving 
numerous results. In Sec. V and VI, the method is 
applied to a nonrealistic but simple .model interaction. 

6 E . Lomon and N. MacMillan, Ann. Phys. (N. Y.) 23, 439 
(1963). 
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Besides illustrating the method, this allows us to com­
pare the wave functions and single-particle spectra 
with those obtained from hard-core potentials. We find 
that the "important region" of intermediate states is 
again near 4F _ 1 ; the reference spectrum should be ad­
justed to the nuclear spectrum in this region. We have 
estimated the Pauli and spectral corrections to the 
binding energy, finding them to be about one MeV per 
particle. 

II. THE PSEUDOPOTENTIAL 

In the boundary-condition model5 (BCM) of nuclear 
forces, the outer part of the two-body force is derived 
from a potential, while the short-range forces are de­
scribed by an (in this paper) energy-independent 
boundary condition at a (fixed) radius r—c\ 

(cdui/dr) | r=c = fm(c). (2.1) 

ui(r) is r times the actual radial wave function, so is 
normalized to a sine wave at infinity. Our boundary 
condition parameter is therefore related to the Fi of 
Lomon et al. by 

fi=Fl+U (2.2) 

This boundary condition is reproduced by the follow­
ing pseudopotential, suggested by a paper of 
Moszkowski and Scott7 : 

v0(r)=(M/ti2)Vo(r) = + K> , r<c-e, 

= -(w2/4e2-2f/ce), c-e<r<c, (2.3) 
= 0, r>c. 

We have in mind the limit e —•> 0. For example, consider 
the 5-wave radial equation in the two-body problem: 

d2u/dr2+(k2-v0(r))u(r) = 0. (2.4) 

In the interval c— e<r<c the solution is 

u(r) = smic(r—c+6), (2.5) 
where 

K~7r/2e-2f/TC (2.6) 

for small e. At r=c we have 

(cu'/u) = KC cot/ce —> / (2.7) 
as required. 

Higher partial waves differ from (2.4) by the presence 
of the centrifugal barrier term; since this is bounded 
while in the limit (2.3) is not, it is clear that the same 
device will work. The pseudopotential, of course, is 
different in each partial wave, using the appropriate fi 
for that wave. 

The main feature of (2.3) is that the deep attractive 
well contains almost exactly a quarter wavelength, the 
"almost" being adjusted so as to reproduce the 
boundary condition. The hard core used for r<c— e 
guarantees that an energy-independent attractive well 
will suffice to reproduce the energy-independent 

7 S. A. Moszkowski and B. L. Scott, Phys. Rev. Letters 1, 298 
(1958). 

boundary condition. Lomon8 has an alternative ap­
proach, using a combination of delta functions and 
differential operators at r=c, which is apparently 
equivalent to a velocity-dependent interaction. How­
ever, it is noteworthy that in the hermitized form of his 
pseudopotential6 a hard core is introduced for r<c; 
therefore, it seems that our methods are closely related. 
Our only claim is that (2.3) is a convenient form for our 
particular application with its emphasis on coordinate 
space, and being a real static potential it is automati­
cally Hermitian. 

III. REFERENCE WAVE FUNCTION: 
UNCOUPLED STATES 

In the reference spectrum method,1 the solution of 
the G-matrix equation 

GN=v-v(Q/eN)GN (3.1) 

is carried out in two steps. One first constructs a refer­
ence GR matrix, which satisfies 

GR = v-v(l/eR)GR; (3.2) 

subsequently GN is the solution of 

GN==GR+Gm( \GN ( 3 3 ) 

\eR eNJ 

One expects that GR will be a good approximation to 
GN, so that (3.3) can in fact be solved by iteration. 
(3.2) is easy to solve since the reference energy de­
nominator is taken to be a quadratic function of the 
relative momentum. This is done by replacing the 
actual intermediate-state energy spectrum by a quad­
ratic reference spectrum which is a good fit to the 
actual spectrum in the important range. The important 
range is determined by minimizing the second term on 
the right-hand side of Eq. (3.3), and for hard-core type 
potentials is &~4 F - 1 . Introducing the reference wave 
function \f/ by 

(<p\v\l)=(<p\GR\<p), (3.4) 

the wave matrix 12 by 
f=Q<P, (3.5) 

and the distortion of the wave function by 

r = ? - * , (3.6) 

one finds [Eq. (3.10) of BBP] 

( V 2 - T 2 ) f = - w V (3.7) 

(V2+k2)<p=0. (3.S) 

We follow BBP in expressing energies in units F~2, the 
conversion factor being fi2/M=41.497 MeV—F2.9 Our 

8 Proceedings of the Rutherford Jubilee International Conference, 
Manchesterj 1961, edited by J. B. Berks (Academic Press, Inc., 
New York, 1961), p. 413. 

9 J. W. M. Dumond, Ann. Phys. (N. Y.) 7, 365 (1959). 
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k, denoted ko in BBP, is half the relative momentum 
of the interacting pair of nucleons for which we are cal­
culating the G-matrix element, y3 is a positive constant 
depending on the total momentum of the pair, and the 
starting energy: its order of magnitude is discussed in 
Sec. 7 of BBP. 

The partial wave decomposition of (3.7) is carried 
out by introducing the expansion 

tfiikr) 
* = £ i ( 2 M - l ) * ' iMcostf), 

kr 
(3.9) 

and similarly defining the radial components Xt and ui 
of f and $, respectively. One has 

Xl=$l-ul (3.10) 

(V?-y*)Xi=--m*vui (3.11) 

Vf=<P/df*-l(l+i)/f*. (3.12) 

while 

When the boundary condition is replaced by the 
pseudopotential (2.3) we can take over the above 
formalism. We first show that u% in (3.11) obeys the 
same boundary condition at r—c as it did in the two-
body problem. Clearly Ui=0 for r<c— e, while in 
c—e<r<c we have (consider 1=0, w*= 1) 

((P/dr2-y2~-Vv)th(r)= - (k2+y2) sinkr. (3.13) 

For small €, 
—vo—T2=+*y2 

since vQ is strongly attractive. The solution is 

sin£(c— e) 

(3.14) 

Uo(r) 
\y2 

y2+k\r 
) sin&f-

-Wl 
•siny (r—c) 

sinfe 

+AQ siny(r—c+e) . (3.15) 

The constant 4̂o is determined after we solve (3.11) in 
the region r>c subject to X0(r) —»0 as r—> oo. How­
ever, A o is of order 1, and therefore in the limit € —»0, 
y —> oo 9 one finds 

UQ(C) 

lim = 
•*"* Uo(c) 

f 
= hm 7 cot7€=~ (3.16) 

just as in (2.7) 
In practice, therefore, one need not worry about the 

region r<c but need only solve (3.11) in the region 
r>c subject to the two-point boundary conditions, 
Eq. (2.1) at r=c, and x - * 0 as r—> oo. In the case of no 
outer potential (pure boundary-condition model), we 
can do this explicitly. 

X0(f) = 
rfsinkc-— kc cosAcl 

yc+f -j 
ry(r~-Oj f>Ct ( 3 # 1 7) 

Ao follows by application of (3.10). We note in passing 

that a hard core of radius c is a special case of (3.16), 
the limit /—» oo. In this limit (3.17) reduces to (5.5), 
(5.10) of BBP. 

I t is no more difficult to handle the higher partial 
waves. Equation (3.13) becomes 

(Vny2)ut(r) = - (&+f*)3i(kr) (3.18) 

with solution 

/k2+y\f3t(kb) .-i 

",w-(i^)U(«*,(1,)-**r)J 
-Ail^l(yb)gl{yr)^gl(yb)^l{yr)'}, (3.19) 

where b=c—e—>c. We again find that as e—»0, 
ye^%T-(2fie)/irc, 

/ dui / \ 
=fl (3.20) 

as required. 
Returning to the special case of the pure BCM, the 

solution of (3.11) for r>c is of the form 

where 
(3.21) 

(3.22) 

is the spherical Hankel function of imaginary argument, 
times 2, which is real, positive, and decays exponentially 
for positive real argument. The constant Bi is deter­
mined by the boundary condition (3.20). Defining 

cT, 
3CI'(TC) 

-yc -_—~yc 
1(1+1) 

we find 

m(c) = 3i(kc) 

Xi(yc) 2(yc+l) 

kc$i(kc)-Mkc) 

fi+TiC 

(3.23) 

(3.24) 

A i then follows by continuity of uh before going to the 
limit e —» 0. 

To conclude this section we evaluate the short range 
part of the GB matrix. In view of (3.4), (3.11), we have 

/ 
Jo 

3i(kr)v,(r)u,(r)dr= (£2+72) 

X / 3Hkr)dr-y* Si(kr)ui(r)dr 
Jo Jo 

- /" 3i(kr)Vi2m(r)dr. (3.25) 
Jo + 

The first term in (3.25) is just the contribution of the 
hard core in the pseudopotential. The second term 
vanishes in the limit since u\ is nonzero only in a strip 
of width €. The third term contributes because of the 
discontinuity in the derivative of ui(r) at r~c— e. We 
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find 

•> 0 

Defining the matrix operator 

(y2+k2) 3?(kr)dr 
Jo 

+m(c)($i(kc)f-kc$if(kc))/c . (3.26) 

uiic) as given by (3.24) is the case of no outer po­
tential; but must be determined in the general case. 
We again note that the second term of (3.26) reduces to 
(5.14) of BBP in the hard-core limit: 

ikam-TiiMkc) 

(our prime indicates differentiation with respect to the 
argument, not just d/dr). 

The boundary edge term in (3.26) vanishes when fi 
happens to coincide with the free wave boundary con­
dition, but the core volume term does not. This is not 
unreasonable since within the framework of the BCM, 
this is not taken to mean weak interaction for r<c, but 
rather to be the accidental result of strong interactions. 
It has perhaps been noticed that (3.24) is singular if 
fi+cTi=0. Mathematically this comes about because 
%i of (3.21) by itself satisfies the boundary condition 
(3.20), leaving no room for a unit multiple of the un­
perturbed function $i. A corresponding problem could 
arise with a general outer potential. However, this is 
unlikely to occur, since negative fi<-~(l+l) corre­
spond to short-range attractive forces strong enough 
to accommodate a bound state. 

IV. COUPLED STATES 

For the coupled states of angular momentum J and 
parity (—)J+1 the partial wave radial equations take 
their simplest form in the entrance channel picture.2 

From BBP Eq. (6.9) we have 

ld2/dr2-^lf(lf+l)/r2--y22(^i^--ul^(r)) 

J+I 

• E vfi»J{r)ui"iJ(r). (4.1) 

These are two coupled equations, for fixed I and 
/ '= /dbl . A solution consists of a two-component radial 
function; the first index on uf/ is used to distinguish 
the components. The second index labels two inde­
pendent solutions of the equations. For example, when 
i = l w e have f=0,2. The S-wave dominant solutionis 
labeled 1=0; we write 

( H )> <4-2> 
\X 2 o/ \ —U20 / 

while the D-wave dominant solution is 
/ X 0 2 \ / "~«02 \ ( M )• <4-21) 
\ * 2 2 ' \02—M22/ 

v/ 
dr* 

J(J-D 

0 

0 

ffi (7+l)(/+2) 

dr2 r2 

, (4.3) 

we rewrite (4.1) as 

(V/-y*)($-u)=-vJu. (4.4) 

The components of the potential matrix vJ are obvious 
from (4.1), Our notation allows us to write the two in­
dependent solutions (4.2) side by side as a solution 
matrix. This is a useful concept since multiplication 
from the right by a 2X2 normalizing matrix N does not 
alter the information it contains, but corresponds to 
taking linear combinations of the two original solutions. 
For simplicity of notation a superscript / on the solution 
matrix is often suppressed. 

The unperturbed solution matrix is clearly 

$ 

satisfying 
\ 0 3J+i(kr)/ 

(v/+w=o. 
We will also have use for 

0 3ej+1(7f)> 

o / = 0 . 

/Wj-xM 0 \ 

\ 0 WMM/ 

(V/-72)3CJ 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

The boundary condition (2.1) as applied to these states 
can be interpreted as a matrix equation, with a real, 
Hermitian,5 2X2 boundary condition matrix 

/ ' 
r / /00 /02\ 

V/20 /22/ /20 fe\ 
(4.9) 

The indices 0, 2 will be /— 1, / + 1 in the case of general 
/ . As explained in Sec. II, our / matrix will differ from 
that of Lomon et al. by a unit matrix. 

This boundary condition is duplicated by the 
pseudopotential 

vp
J(r) = + ec f r<h 

A'OO ^02\ 

V^20 ^22/ 
b<r<c (4.10) 

with 

N^20 ^22/ 

= 0, c<r 

vm=-(w/2€)2+2f0o/c€} 

VQ2 = + 2 /o2 / C€ = 020 j 

V22=-(7r/2e)2+2fn/ce, 

(4.11) 



B304 M. RAZAVY AND D. W. L. S P R U N G 

The off-diagonal elements of fJ correspond to an 
effective tensor force at small radii, while the diagonal 
ones correspond to the most general mixture of central, 
spin-orbit, and quadratic spin-orbit forces as well. As 
in the uncoupled case, for small enough e the potential 
will be as large as desired compared to the energy and 
angular momentum terms in the wave equation; there­
fore, the reference wave function will again satisfy the 
same boundary condition as the free two-body problem. 
Hence the problem is again reduced to solving the refer­
ence wave equation (4.4) for r>c} subject to the 
boundary conditions (2.1) at r=c, and %J —»0 (all 
matrix elements) as r —» °°. 

We can still carry out the solution explicitly for the 
pure BCM. With vJ=0, (4.4) has the solution 

XJ(r) = WJBj=XJ (4.12) 

with Bj a 2X2 normalizing matrix. The boundary 
condition at r=c says 

(D$'-DKJBj) | c= (l/c)fJ($'-KJBj) | c, (4.13) 

where D is the unit matrix operator with elements d/dr. 
This gives 

&>'Bj\e= (cTJ+f)-i(fJ3J~~kc$n | c, (4.14) 

TJ being the diagonal matrix with elements (3.20). The 
prime on $ indicates derivative with respect to the 
complete argument. 

The G-matrix elements can be derived most easily 
from Eqs. (4.4), (4.6), and (4.8). We will derive two 
alternative expressions, both valid for a general outer 
potential. The first of these is useful for treating the 
outer potential as a perturbation. Take the Hermitian 
conjugate of Eq. (4.6), multiply from the right by %• 
Multiply (4.4) from the left by xf and subtract: 

( W x - ^ ( £ 2 x ) + (*2+72)5tx= -tfw- (4-15) 

Since 3€ defined in (4.12) also satisfies (4.8) we can 
similarly derive 

(D2xyX-^(D2
x)=-^vu. (4.16) 

Integrating from r=c to QO and using (4.4) we find 

ghudr=(k2+y2) g^xdr 

+D(3^&)\cX(c)-(3^XW(c) 

where uQ(c) is the value of the solution matrix for the 
case of no outer potential ($— JC) at r~c, and can be 
found from (4.14). This is just the boundary edge term 
for the pure BCM. The third line of (4.17) expresses 
the contribution of the outer potential as a matrix 
element between the complete solution and the pure 
BCM solution. If the outer potential is not too strong, 
causing distortion of uJ, the substitution uJ~($—3Z) 
should allow qualitative discussion of the role of the 
outer potential. Higher Born approximations are 
obvious. We caution that this expansion may not be so 
reliable as in the case of hard-core potentials. For those, 
u(c) = 0 and the deepest parts of v(r), adjacent to the 
core, are therefore suppressed. For the BCM, u is non­
zero, and may be quite large outside the core. On the 
other hand, one expects boundary radii to be somewhat 
larger than hard-core radii, and the outer potential on 
the whole weaker. 

Collecting terms we have explicitly 

ghudr^{k2+y2)\ tf$dr 
Jo 

1 

+-(sf~kcsf)\is+(cv+fy 
€ 

X(kcg~fS)lc+ f i t- •K*)vudr. (4.19) 

In the binding energy of nuclear matter one needs only 
the diagonal elements, the trace, of this matrix. This 
applies to uncoupled states as a trivial case with /, and 
therefore 3C, diagonal. Following the argument of BBP 
to Eq. (6.11), the spin triplet even parity states con­
tribute to the reference GR matrix 

i Sir «> 

£ <0i,oM|Gfl|^,oM) = ~ E ( 2 / + D E 
iW—1 k2 J=l event 

ST «5 
3i(vJuJ)udr=—Z (2J+1) 

0 k2 «/=! 

• / Tx(3JvJuJ)dr. (4.20) 
Jo 

In actual calculations the solution of the pure BCM is 
not needed. By manipulations similar to (4.15) one can 
express 

+ / (gt-K^vudr. (4.17) ^o 

> nC 

3hudr=(k2+y2) tfgdr 
Jo 

1 f°° 
' . ,„ ^ . +-(3f-kc$')eu(c)+ tfvudr, (4.21) 

For r<c, uJ vanishes, and x=cl- The first term in c J c 

(4.17) is just the core volume term. The second term 
can be cast in the form where u(c) is the value of the actual solution matrix 

uJ
y satisfying (4.4). This is the practical form for calcu-

(3(f/c)-k$')\cUo(c), (4.18) lations, rather than (4.19). 
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The treatment given so far has assumed the reference 
effective mass to be one; otherwise our proof that the 
reference wave function will obey the boundary condi­
tion at c, breaks down. This occurs since K of (2.6) is 
replaced by (w*)1/2/c, and (2.7) is seen to be replaced by 
a hard-core boundary condition for w*?^l. This ex­
treme sensitivity of the boundary condition to the 
effective mass is clearly unphysical, and wrong. If one 
regards the BCM simply as simulating the effect of a 
hard core plus a strong finite inner potential, the 
boundary condition would be slightly different for the 
reference wave function, but not greatly different. 

Part of the difficulty is clarified10 by looking back to 
the integral equation (3.1), and regarding the BCM 
interaction as 

V=Vp+Vouter- (4.22) 

In so far as the pseudopotential vp is concerned, the 
matrix elements (k\v\kf) will not become small until 
&'>7r/2e, where e is the width of the potential. Due to 
the volume element k/2dk', most of the contribution to 
the sum over intermediate states will come from mo­
menta ~7r/2e. In the limit of zero width, the contribu­
tion of vp to G should depend only on the effective mass 
at infinite k, and not on the effective mass of the refer­
ence spectrum which is usually determined at &~4 F"1. 
(Lomon11 has a proof of this assertion, but we have not 
seen his argument.) 

To remove this difficulty with the effective mass, we 
have argued as follows: Within the framework of the 
BCM there is a special emphasis upon the wave function 
at the boundary radius, and one ought to choose the 
pseudopotential so as to preserve this property. The 
freedom to choose a reference spectrum with w*?*l is 
useful to give a better fit to the nuclear spectrum. One 
can combine these objectives by setting 

-Vp=iP/4&n*--2f/cem*, c-e<r<c. (4.23) 

The outer potential remains unchanged. The choice 
(4.23) makes vp different in the many-body problem 
than in the two-body problem, but it has the advantages: 

(i) The boundary condition at r=c, which is the 
distinctive characteristic of the BCM, is preserved. 

(ii) The contribution of vp to the G matrix becomes 
insensitive to the reference effective mass, as discussed 
above. 

(hi) One can use a two-parameter reference spectrum 
which provides a better agreement with the nuclear 
spectrum. 

With the prescription (4.23), the calculation of GR 

proceeds as follows: In the reference wave equation 
(4.1) or (4.4), the outer potential is replaced by 
vJ—>?n*vJ. The equation is solved in the region r>c 
subject to uJ(r) satisfying (2.1) at r—c unchanged, and 

tending to $J(kr) as r - » <*>. The GR matrix is con­
structed from (4.19) to (4.21), where again vJ->fn*vJ. 

V. A SIMPLE MODEL INTERACTION 

The previous sections have shown how the reference 
spectrum method can be applied to the BCM, and the 
reference G matrix evaluated, but we have not yet 
justified the reference approximation. 

In the case of hard-core potentials, BBP have 
argued that the important range of intermediate-state 
momenta is from k~2 to 4 F"1, and that over this 
limited range the intermediate-state energies can be 
well approximated by a quadratic form. The actual 
"important range" is determined by examining the 
correction term GN-GR (3.3); which to good approxi­
mation can be expressed as an integral over the Fourier 
transform of the distortion, f(fe) [see (6.3)]. f (k) has a 
maximum in the indicated range of momenta, essen­
tially because the hard core scatters into intermediate 
states k~ir/2c. A good fit of the reference energy ER 

to the actual energy EN in this range will minimize the 
"spectral correction." 

As a test of our method, and with a view to seeing 
what range of intermediate momenta are important in 
the BCM case, we have applied it to a simple model 
interaction. This acts only in S states, and consists of a 
boundary condition / at radius c, with a square well of 
outer radius "a" and depth Mv/n2 beyond. The radius c 
was arbitrarily taken at 0.7 F, in the range of phe-
nomenological fits; the other three parameters were 
adjusted to give infinite scattering length, effective 
range 2.50 F, and to have negative phase shift beyond 
240 MeV. The resulting phases (Fig. 1) lie within J° 
of Breit's12 x50 phase for the set YLAM, between 25 and 

50 100 150 200 
Energy (MeV) 

10 The argument in this paragraph was suggested by Professor 
Bethe. 

11 E. Lomon (private communication). See also Ref. 6. 

FIG. 1. The circles are phase shifts calculated from the model 
interaction consisting of a boundary condition /=0.7466 at 
c = 0.7 F, and a square well of depth 14.26 MeV and outer edge 
2.52 F. The scattering length is infinite, and effective range 2.50 
F. The solid line is from the fit YLAM of Breit el at. 

12 G. Breit, M. H. Hull, K. E. Lassila, K. D. Pyatt, and H. M. 
Ruppel, Phys. Rev. 128, 826 (1962). 
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FIG. 2. Potential energy spectrum calculated for foe=1.0 F"1 

*»*=1, A = 1.41. The solid line is the output nuclear spectrum 
having the same mean value (self-consistency) as the reference 
spectrum (dashed line). 

300 MeV. The parameters are / = 0.7466, a=2.52 F, 
»=0.3436 F~2 equivalent to 14.26 MeV. The square-
well shape has some defects, too much of the attraction 
occurring at large radii, but the problem is soluble 
analytically. 

In the calculations we have made certain additional 
approximations. First, we have replaced the hole states 
by a quadratic "approximate spectrum" having the 
same effective mass as the reference spectrum, as sug­
gested by BBP Sec. 7. 

(5.1) 
UR(k) = a0+a1k

2 

UA(km) = bo+oJtm*. 

This has the great virtue that the energy denominators 
involve only 

a0~~ J0== A. 
M ?n* 

(5.2) 

The constant A is adjusted so that UA agrees with the 
actual hole-state energy for an average nucleon in the 
sea; viz. km= (0.6)1/2kF. Using the correct hole energies 
would make A a function of km. A of course has no direct 
connection with a gap at the Fermi surface. 

In calculating the single-particle spectrum from the 
diagonal elements of the G matrix we used the two 
approximations [Eq. (7.5) of BBP], G=GR, and 

(kn\GR\kn) 
~p(kn\GR\kn)8pinzr* 

(5.3) 

p is the number of states, 2kF*/3w2, in the Fermi sea. 
This is equivalent to assuming quadratic dependence 
of G on the state n; n is the average momentum in the 
sea. Some confidence in the second approximation was 
afforded by the fact that in a preliminary calculation we 
made the drastic simplification of estimating the mean 
potential energy per particle U by the approximation 

(5.4a) 
m<kF 

~p{mn\GR\fhn)&Y. 

We found that (5.4b) agrees with (5.3) in (5.4a) to a 
few tenths of a MeV. 

Finally, we used the estimates of BBP Sec. 7 for the 
energy denominators: 

ym
2=2AkF

2-k2, 

76
2=(3A~0.6)&F

2+3&2, 

(5.5) 

where we assume the hole state km to interact with a 
state kn at the average momentum, and average over 
angles. 

The calculation proceeded as follows. For fixed hFy 

trial values of A, m* were selected. For values 
km=0(kp/B)kF, the parameters (5.5) were evaluated 
and U(km) evaluated as in (5.3). An integration 
(5.4a) gave £7, and the binding energy per particle 
E/A = T+&. 

For kb—kF, and 1.5 (0.5) 8.0 F_1 the single-particle 
potential was evaluated and a least-squares fit of 
(5.1a) between, say, 2.0 and 5.0 F - 1 defined the new 
reference spectrum. The difference 

£7* (km) - U=WkF
2A/Mm* (5.6) 

gave the new A, while m* follows from the quadratic 
coefficient a\ in (5.1a). 

The calculation was repeated using the new A, m*; 
in three or four iterations self-consistent values of these 
parameters were obtained, making the reference spec­
trum a good fit to its own output "nuclear" spectrum. 
Using the self-consistent parameters the Pauli and 
spectral corrections were then evaluated for an average 
pair in the sea, as discussed in the next section. 

In the final calculations presented here the effective 
mass was fixed at one, which is necessary to make the 
spectral correction small. The fitting range was taken 
as 1.5 to 4.5 F""1 so as not to overweight large values of 
U(k). The self-consistent spectrum for kF=1.0 F_1 is 
shown in Fig. 2 as a solid line; the reference spectrum 
is the horizontal dashed line. Only the potential energy 

2 „ 

(5.4b) 

FIG. 3. Binding energy per particle versus kr for the simple-
model interaction. The solid line is the reference-spectrum calcu­
lation. The circles include Pauli and spectral corrections. 
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is shown, so the deviations should be compared with 
the kinetic energy which is 750 MeV at k=6.0. The 
output "nuclear" spectrum turns over at high k 
because of our interaction only in S states. If higher 
partial waves were interacting via a short-range re­
pulsion there would be a further rise in U(k) above 
5 F"1, which would alter the self-consistent values of 
A, w*. The behaviour of U(k) just above kp is quali­
tatively reasonable, in that there is a small energy gap 
(no relation to A!) but we cannot claim quantitative 
accuracy here. 

The calculated binding energy per particle is shown 
in Fig. 3. The solid line is the reference spectrum ap­
proximation, while the circles are final values including 
estimates of the Pauli and spectral corrections. Satura­
tion is seen to occur at low density (kF~ 1 F_1) and with 
weak binding (c^3 MeV per particle). The low density 
is possibly due to the large boundary radius used in our 
model. More realistic boundary condition radii seem to 
be about 0.6 F, which would lead to more binding, and 
higher density. Some other parameters are listed in 
Table I. 

In Fig. 4 we plot the wave functions m(r), $o(kr), and 
the distortion X0(r) calculated for an average pair in 
the sea at &F=1 .0 F_1. It is interesting that X0(r) is 
negative outside the boundary, and is in very close 
qualitative agreement with that obtained by BBP for 
the Gammel-Thaler potential (cf. Fig. 13 of BBP). The 
BCM is thus seen to simulate the same short range 
forces as the potential models. The healing distance is 
quite comparable with that found by BBP in spite of 
the unrealistic wide square well of our model. If our 
self-consistent A were greatly reduced, our healing 
distance would be increased by the square well. 

The Fourier sine transform of the distortion, x(&')> 
is needed to evaluate corrections to the reference ap­
proximation. From Fig. 4, we expect x(^0 to be nega­
tive at low k\ to vanish when the maximum of sin&V 
falls near the boundary radius c, and to have a positive 
maximum when the first loop of sin&V falls entirely 
inside c; for k'^w/c^^ F_1. This is borne out in Fig. 5. 
The peak at 4 F - 1 occurs at about the same place as for 
hard-core potentials, because our boundary radius is 
about double typical hard-core radii. Since this peak is 
the one important in determining the spectral correc­
tions, the criteria for fitting the reference spectrum will 
be very similar for the BCM and the hard-core potential. 

TABLE I. Self-consistent calculations with constant UR. 

* F ( F - » ) 
(MeV) 

£7 (MeV) E/A(MeV) Pauli 
(MeV) E/A(MeV) 

Spectral Total 

1.4 
1.3 
1.2 
1.1 
1.0 
0.9 
0.8 
0.7 

1.61 
1.57 
1.52 
1.47 
1.41 
1.35 
1.28 
1.20 

- 2 2 . 8 
- 3 1 . 4 
- 3 5 . 0 
- 3 4 . 8 
- 3 2 . 1 
- 2 7 . 8 
- 2 2 . 7 
- 1 7 . 6 

13.0 
5.3 
0.44 

- 2 . 3 4 
- 3 . 6 1 
- 3 . 8 2 
- 3 . 4 1 
- 2 . 6 9 

0.27 
0.33 
0.53 
0.75 
0.91 
0.98 
0.96 
0.89 

0.7 
0.6 
0.32 
0.15 
0.13 

1.7 
- 1 . 0 
- 2 . 4 
- 2 . 7 
- 2 . 3 
- 1 . 8 

1.0 

.8 
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FIG. 4. Wave function u(R) (solid line) and distortion (dashed 
line) for an average pair of nucleons at for =1.0 F - 1 , A = 1.41. In 
a hard-core potential, the discontinuity in x(R) is replaced by a 
rapid drop just outside the core. 

The shape of x(&) was found to be quite insensitive 
to &j?, A and m*, the main difference lying in the height 
of the negative peak at low IZF. TWO examples are shown 
in Fig. 5. The negative peak is sensitive mainly to the 
value of A, but tends to be smaller at larger IZF. 

VI, CORRECTION TERMS 

The true "nuclear" GN matrix satisfies the integral 
equation (3.3). Assuming that the reference GR matrix 
is already a good approximation to GN, the correction 
to GR is approximately 

GN-GB **G**( ]GB. 
\eR eN/ 

(6.1) 

In this section we discuss the corrections to the binding 
energy of nuclear matter, for which purpose one needs 
only the diagonal matrix elements of (6.1), and only 
the spin-isospin average of these. BBP [Eqs. (6.18)-
(6.37)] have expressed this quantity as 

<*|G*-G*|*> ( -f 
Jo 

8{V)$(W)dk't (6.2) 

k (F"') 

FIG. 5. Fo(k), the Fourier sine transform of the distortion of the 
S wave, divided by fa. The two curves are calculated for 
(a) ^ = 1 . 0 , A = 1.41 and (b) kF=l.S, A = 1.57. 
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where 

&(k')^eR, k'<kF (6.3) 

= (eN-eR)eR/eN, kf>kF (6.4) 

and in the case of 5-wave interaction only, 

$(k')= (6/k%X0(k')J^6F2(k'). (6.5) 

k is the relative momentum of the two initial-state 
nucleons in the unperturbed state \<p>. X0(&') is the 
Fourier-Bessel transform of the distortion X0(r) in the 
S wave; explicitly 

/.CO 

Xo(*') = / sinfeVXo (r)rfr. (6.6) 
J o 

The regions of integration in (6.2), above and below 
kF are called the spectral and Pauli corrections, re­
spectively, the distinction being useful in view of (6.3), 
(6.4). 

I t is seen from (6.1) that a more elaborate calculation 
than we have performed would modify the output 
"nuclear" spectrum at each iteration by the addition 
of a term. UN—U0utput which can be calculated by 
taking the matrix element (6.2) summed over hole 
states. This we have not done. In effect, we have 
assumed either that this correction will be small, or at 
least that it will be relatively constant over the im­
portant region of momenta for which the reference 
spectrum is fitted. We have, however, estimated the 
correction to U which is due to (6.3), using the approxi­
mation (5.4b): 

AU~p[(mn\GN-GR\mn)\Y, (6.7) 

i.e., spin-isospin average, and computed for an average 
pair of nucleons in the Fermi sea. Since this approxima­
tion was remarkably good for U itself, it should be 
quite adequate for estimating the corrections. This 
estimate of AU of course ignores possible changes in the 
selfconsistent parameters A, tn*, which would result 
from the improved calculation of UN mentioned above. 

From (6.3) it is seen that while the Pauli correction 
involves only eR, which is known, the spectral correction 
requires a knowledge of eN as well. Further, (6.4) is 
small in the region £ ' ~ 4 F"1 where our calculation of 
eN is most reliable, so that the bulk of the spectral cor­
rection comes from small and large momenta where our 
knowledge of eN is imprecise. We must regard the com­
puted spectral corrections as only order of magnitude 
estimates. In the evaluation, we took eR as in (5.5) and 
eN-eR=2(UN~UR), UN being the output spectrum 
as in Fig. 2, for example. 

The major difficulty in applying the reference spec­
trum method to the BCM is connected with solving the 
integral equation (3.3); or more precisely, with evaluat­
ing the spectral correction in the approximation (6.1). 
For a general value of the reference effective mass 
S(kf) in (6.4) will be of order (k')2 at large momenta, 

but $(kf) will be only of order (k')~2. This is because in 
the BCM, x W has an actual discontinuity at the 
boundary radius as shown in Fig. 4. In the case of a 
hard core potential, x M has only a discontinuity in 
slope, giving an extra power of k~l in its Fourier trans­
form. I t is seen that in the BCM, the integral (6.2) will 
be linearly divergent, which means that the approxi­
mation (6.1) is unreliable. 

This difficulty may be removed by choosing the 
reference effective mass to agree with the nuclear-
spectrum effective mass at infinite momentum, so that 
S(k') is only of order one. The convergence of (6.2) is 
then just as good as in the hard-core case, but the 
freedom of adjusting the effective mass is lost, and the 
correction terms may be somewhat larger. In our par­
ticular application to an interaction only in S waves 
(or any case with only a limited number of partial 
waves), the nuclear spectrum has an effective mass 
asymptotically equal to one. In this application we 
have therefore restricted m*=l, which implies a con­
stant UR as already displayed in Sec. V. UR, in this 
case, is taken to be an average value of the nuclear 
spectrum over the range of momenta where $(k) is 
large, which will minimize the spectral correction. 

In a more realistic application the choice m*=l 
would not be obvious. If one follows BBP in assuming 
a repulsive core acting in all partial waves, the asymp­
totic effective mass would be w* = 1 — 2 (c/Vo)3. On the 
other hand, one might revert to fitting both A, m* over 
a finite range of momenta, and then ignore the resulting 
divergence at very high momenta on the grounds that 
the actual behaviour of the spectrum is uncertain. The 
BCM differs from hard-core models in its treatment of 
the interaction between 0.4 and 0.6 F, and this only 
effects $(k) for & > T T / 0 . 2 ~ 1 5 F"1. A cut off in the inte­
gral at this value would seem reasonable. 

The calculated correction terms are included in 
Table I. The Pauli corrections are seen to be fairly 
constant; the spectral correction increases rapidly with 
kF. The variation is due to changes in the spectrum, 
the wave functions being quite stable. 

As an additional check on the approximations, the 
calculations were repeated using the constraint UR = 0. 
This clearly gives a smaller A, and more binding in the 
reference approximation. However, the spectral cor­
rection is now entirely repulsive, and large, so that the 
final results agree to about one MeV. Calculations were 
also performed using an effective mass m*9^1, ignoring the 
divergence in the spectral correction. These give A ~ l , 
slowly increasing with kF, and w*~0.9, slowly decreas­
ing. The reference approximation to the binding energy 
was little changed, but the spectral corrections were 
several MeV attractive. I t is thus clear that different 
assumptions about the behavior of the interaction at 
higher energies, and in higher partial waves, can make 
significant changes in the results via changes in the self-
consistent reference-spectrum parameters. 
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VII. DISCUSSION 

We have shown how the reference spectrum method 
of Bethe, Brandow, and Petschek1 can be extended and 
applied to calculate the binding energy of nuclear 
matter when the two-body interaction (BCM) is de­
scribed by the boundary-condition model of Feshbach, 
Lomon, and collaborators.5 The chief merit of our 
method is that the calculations are simple, and carried 
out in coordinate space where the BCM is most easily 
visualized. As in other applications of the BCM to the 
many-body problem, we replace the boundary condition 
by a singular pseudopotential at the boundary radius. 
Our particular choice of pseudopotential is convenient 
for use in the reference-wave equation, and preserves 
the boundary condition at r=c in the many-body 
problem. The contribution of short-range forces to the 
reference G matrix is given by simple explicit formulas 
which may be of special value for applications to finite 
nuclei using the G matrix as the effective screened 
interaction. 

The method has been applied to a simple model 
interaction (in S states only), which was chosen to 
agree with phenomenologically determined phase 
shifts. In order to make the spectral corrections small, 
the reference effective mass was fixed at one, making 
our reference potential energy somewhat different from 
those expected in a realistic calculation. However, the 
distortion of the reference wave function is very close 
to that found with realistic hard-core potentials, 
(making the important range of intermediate-state 
momenta again near 4 F"1) and is independent of &F-

For our model potential, we found saturation at 3 MeV 
binding energy, and kF~ 1 F""1. The low density is at­
tributable both to the large boundary radius used, and 
also to the large values of A consequent upon our S 
state only interaction. Both these features will improve 
in a realistic calculation. 

The boundary-condition model expresses our knowl­
edge of the short range part of the two-body inter­
action in terms of a small, perhaps minimal number of 
adjustable parameters, without arbitrarily deep and 
perhaps oscillating potentials in the region near 0.5 F. 
I t is therefore of interest to see whether its predictions 
for nuclear matter agree with those of hard-core po­
tential models, and to discover whether the actual 
details of the short-range interaction are important. We 
intend to apply this method to the realistic BCM 
parameters determined by Lomon. 
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